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1. Introduction
• Why did we want to do this

− Share our knowledge of porting and optimizing
− Prevent mistakes in code development and/or

maintenance
− Expose good programming techniques for any

language
• Where we are coming from

− Combined 20+ years of writing, porting, and
optimizing HPC applications on massively parallel
supercomputers

− Our definitions/viewpoints may be debatable
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Insightful remarks?
• “The art of programming is the art of organizing

complexity, of mastering multitude and avoiding its
bastard chaos as effectively as possible.” [Dijkstra]

• “Barring some real breakthroughs in compiler
technology, the computers of the 2000's will be even
more finicky than the computers of the 1990's.” [Dowd]

• “The true problem with software is hardware. … We
have been shielded by hardware advances from
confronting our own incompetence as software
professionals and our immaturity as an engineering
profession.” [Constantine]
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1.1 Portability
• Porting to new platforms should only require

setting compiler, libraries, etc.
− Port should take O(minutes)

• One source
− Don’t want two or more versions of any routine
− Platform-specific “code” should only be compiler,

library settings
− Avoid high maintenance cost of moving a tuned code

from one architecture to another
• Runs correctly on all computers
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1.1 Portability
• Potential by-products

− Minimal, localized machine-specific code
− Minimal #ifdefs
− Code readability
− Minimal use of non-standard libraries

• Unless performance gain is huge
− Port to any machine in minutes

• With some exceptions
− Lower performance
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1.1 Portability
• Stroustrup said:

− “If your program is a success, it is likely to be
ported, so someone will have to find and fix
the problems related to implementation-
dependent features.”

− “Constructing programs so that improvements
can be implemented through local
modifications only is an important design
aim.”

− Yes, he is the creator of C++
− Philosophy still applies



Portable Performance-Oriented Programming    9

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.2 Performance
• Tuning your code to make it run fast

− Spending as much real time as you want
• Taking advantage of fastest I/O,

communication, and numerical libraries
• Willing to make changes to the code

− Tuned for memory hierarchy and processors
− Might be slower on other computers
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1.2 Performance
• Potential by-products

− Much machine-specific code
• Spread across code base
• Multiple overlapping source trees

− Numerous #ifdefs
− Unreadable code segments
− Use of non-standard libraries
− Ports can take days/weeks
− Upgrades to primary machine may require whole new

round of optimizations (to possibly undo previous
opts)
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1.2 Performance
• Alpern and Carter said:

− Performance programming
• Design, writing, and tuning of programs to keep

processing elements as busy as possible doing
useful work

• Improve performance beyond what is achieved by
programming an algorithm in most expedient
manner

− Beyond selecting algorithms with good asymptotic
complexity (not discussed today), requires acute
sensitivity to details of processor architecture and
memory hierarchy
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1.3 Portable performance
• Keep most machine-specific content in make.inc and

possibly one source-code file (utilities)
• Leverage significant performance optimizations
• Employ poly-algorithms

− Choose between algorithms at runtime

• Sacrifice some performance
− Leave out small improvements disruptive to source

• Don’t mess up the source code “too much”
• Use optimized vendor libraries when it makes sense
• Must be willing to spend effort on optimizations to

see what works for multiple machines
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1.3 Portable performance
• Intended consequences

− Still port in minutes/hours rather than
days/weeks

− Code still readable
− Pretty fast on most machines

• At least the ones where it matters most
− Performance tuning takes more work

• Must test multiple machines
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1.3 Portable performance
“…we can only afford to optimize (whatever that

may be) provided that the program remains
sufficiently manageable.” [Dijkstra]
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1.4 Maintainability
• What is maintainability?  Easy to:

− Understand what the code does
− Change your mind about design decisions
− Add functionality
− Uncover and fix bugs

• Typically much more time is spent maintaining
code than writing new code
− OO isn’t a panacea
− See quotes on next slide
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1.4 Maintainability
• Hatton said, in one of few studies measuring effects of

OO design:
− “a valid silver bullet for software must lead to a massive

reduction in maintenance, which is by far the life cycle’s biggest
component”

− “no significant benefits accrued from the use of an OO
technique in terms of corrective-maintenance cost and the
company views the resulting C++ product as much more difficult
to correct and enhance”

• More light-heartedly, Kent Beck at OOPSLA ’05:
− "People who could not do a decent job with structured design

went to objects so no one would notice.”
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1.4 Maintainability
• Important issue

− Needs its own tutorial
• But today we focus on portable

performance-oriented programming
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1.5 Fortran
• The “F” word, or “undead language”
• Why use Fortran?

− 32% of all users of engineering and scientific workstations
worldwide write in Fortran [Willard]

− Native language of many DOE and DOD apps (new and old)
− Compiler technology is mature
− Minimizes dependencies, maximizes optimizability
− Built-in arrays and simple data structures make programs

simpler to parallelize
• Destined to be replaced by:

− Algol, PL1, Pascal, Ada, C, C++, Java, …
− Matlab, Maple, Mathematica, …
− Chapel, X10, Fortress
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Portable Performance-Oriented
Programming

• In what follows:
− Present basic principles of code writing and

portability up front
− Then present various optimizations with

portability in mind
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1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies
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2. Programming basics
Consider the following when developing code
1. Generic principles

− Diagnostics
• Internal timers
• Debug checks

− Consistent programming style
2. Portability techniques

− Preprocessing
− Modules
− Modularization
− Checkpoint/restart (often a must)
− Interoperability

3. Programming for the Future
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2.1 Generic principles
• Use diagnostics

− Verbosity
− Timers
− Checks

• Verbosity (helps in debugging)
− Might want multiple levels of verbosity
− Input flag should control this

 if (verbose_flag == 1 .and. iam == 0) then
     print *,’ time step =',time_step
     print *,'**[subA done]'
  endif

− Limit so performance is not adversely affected
• Strive for near negligible (in terms of CPU time)

amount of if tests



Portable Performance-Oriented Programming    23

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Internal timers

− Time major phases
• Print out stats every m timesteps and summary at

completion
 if (modulo(step,time_skip) == 0) then
     call write_timing('timing.out',10,mode)
 end if

• Get your own profile (at this level of granularity)
− Know costly parts of code without having to use new tools
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2.1 Generic principles
• Internal checks

− Functionality/correctness
• Check return arguments, lengths of arrays, etc.
• Compile in with macro (_DEBUG?)

−Will slow code down
− So best to be a compile-time option

• Example:
#ifdef _DEBUG
      if (debug_flag .EQ. 1) write(*,*) ' x= ', x
#endif
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2.1 Generic principles
• Internal checks

− “I spent a lot of time talking about how not to need a debugger in the first
place. If you know something that has to be true in your code, assert it.”
Kate Hedstrom, ARSC HPC Newsletter 326

− The following example is not a C++ assertion, but similar in spirit

#ifdef _DEBUG���
    if((i .lt. lbound(arrayA,dim=1)) .or. &
      (i .gt.ubound(arrayA,dim=1))) then���
      write(*,*) ”i outside range of arrayA:  i=", i���
    stop
#endif���
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2.1 Generic principles
− Numeric checks

• Watch out for catastrophic cancellation
− When operands nearly cancel one another out

• Effects of catastrophic cancellation can easily be magnified
− sqrt(1-x): possible loss of half significant digits
− If x is nearly 1, then sqrt(1-x) should be 0

• Example (Gyro): make_omegas.f90
temp = sqrt(abs(energy*(1.0-lambda(i,k)*b0(i,k,m))))
if (abs(temp) < 1e-5) e_temp_p = 0.0

• Output norms, like MPI_reduce(sum(abs(x)))
− Helpful in debugging wrong answers
− Or check that a norm is within an expected range

• Check return values from math library calls
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2.1 Generic principles
• Consistent programming style

− Easy to read, easy to do search/replace
− Indenting (use spaces)
− Use descriptive variable names

(don’t get carried away though)
− Comment-based data structures

• Group variables and described them with
comments

− Similarly, a loop structure or other code
segment may be described by one comment
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2.2 Portability techniques
• Preprocessing

− Minimize and localize
• At odds with compile-time debugging checks

− Use meaningful names
• LINUX too general
• NEED_UNDERSCORE or ADD_ better

− “Almost every macro demonstrates a flaw in the programming
language, in the program, or in the programmer.” [Stroustrup]
• That may be, but still a necessary evil

− “If you must use macros, use ugly names with lots of capital
letters” [Stroustrup]
• Ugly  meaningful
• Possibly start and end with “_”

− What about system-defined architecture-specific macros?
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Conditional compilation
• Various controls can easily combine in

unforeseen ways
− Thus the advice to minimize and localize

• If you use #ifdef for machine dependencies
− Make sure that when no machine is specified, the

result is an error, not a default machine
− #error directive is useful for this purpose

• If you use #ifdef for optimizations
− Default should be unoptimized code rather than an

uncompilable or incorrect program
− Be sure to test the unoptimized code
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Modules
• Benefits

− Code reusability
− Type checking

• Kinds module
− Define kinds in one place, and use throughout code
− If changed, will require whole code to be compiled, which

is what you want
− It does not change input files or MPI data types though!
− Advice: use only if you expect to need different kinds

• Cross-dependent source files - legal but not nice to
some compilers that try to do inlining
− File X contains module A and C, and A “use”s B
− File Y contains module B which “use”s C
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Modularization
• Modularizing communication at roughly the block-synchronous level

− Your own communication library
− Some leeway for optimization since some “physics” is still included
− Aim for potential overlapping communication and computation

• Co-Array Fortran naturally gives you overlapping communication
and computation

• Similarly, modularize I/O at a block level
• Wrap low-level system utilities, keep in utilities file that is easily

modified when porting

• Note for MPI codes:
− Assume your code may be a piece of a larger code someday  don’t

use MPI_COMM_WORLD
− Make your own world communicator

Ex: Duplicate MPI_COMM_WORLD to my_world
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Utility example
• Put the following in a utilities file
• If porting issues arise, only fix one thing/file

 subroutine execute_command(cmd)

      character(*), intent(in)  :: cmd

# ifdef SGI || SP2 || CPQ
      call system(trim(cmd))
# endif
# ifdef T3E || X1
      call ishell(trim(cmd))
# endif

  end subroutine execute_command

 good macros?


Does ifdef code
follow earlier advice?
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Checkpoint/restart
• Usually a must
• Lets you use an unstable system from day one
• At allocated sites, can result in bonus hours if machine

crashes during run
• Consider ramifications of how you do this

− Unformatted or formatted
− 1 file or many files
− 1 checkpoint or checkpoints every m steps

1 checkpoint is never enough
Do at least 2, current and previous

− The answers to these may depend on the filesystems and/or machine

• Do you need files to be portable?
− Big endian/little endian (often a compile-time option for I/O)
− HDF5, NetCDF
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C/Fortran interoperability
• Minimize C/Fortran interoperability

− Porting can be troublesome
• If required (e.g. Fortran program calling C library)

− Localize interactions
− Keep interface in a easily recognizable file to be reviewed when

porting
• Or use modern interoperability features

− Standard C interoperability (Fortran 2003)
− Allows Fortran programs to call C functions and access C global

objects
− And vice versa
− ISO_C_BINDING module provides interoperable kind

parameters for C types and Fortran intrinsic types
− Requires modern compiler (Fortran standard compliant)
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Interoperability example
$ more libc_defs.f
      module libc_defs
      use,intrinsic iso_c_binding

      interface
         function kill(pid, sig),bind(c) result(return_val)
         import c_int, c_int32_t
         integer(c_int)           :: return_val
         integer(c_int32_t),value :: pid
         integer(c_int),    value :: sig
         end function kill

         function getpid(),bind(c) result(pid)
         import c_int32_t
         integer(c_int32_t)       :: pid
         end function getpid
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Interoperability example
         function system(syscall),bind(c) result(rval)
         import c_int,c_char
         CHARACTER(len=*, KIND=c_char) :: syscall
         integer(c_int)  :: rval
         end function system

         function sleep(seconds),bind(c) result(rval)
         import c_int
         integer(c_int)  :: rval
         integer(c_int),value  :: seconds
         end function sleep
      end interface

      end module libc_defs
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Interoperability example
$ more tst.f
      use libc_defs
      use,intrinsic iso_c_binding

      integer(c_int)     :: sig,res
      integer(c_int32_t) :: pid

      pid = getpid()
      sig = 9
      res = kill(pid,sig)

      end
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2.3 Programming for the future
• Gate counts keep increasing

− Floating-point units get cheaper
− More fine-grained parallelism

• Clock-speed increases are stalling (Heat!)
• Bandwidth may be catching up

− Wire signal rates continue to increase
− Optical communication will get cheaper

• Programming implications
− Clearly present fine-grained parallelism
− Allow latency hiding (local and remote)
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2.3 Programming for the future
• Operate on adjustable sub-aggregates

(blocks, tiles, etc.)
− Not scalars (to allow vectorization and

pipelining)
− Not the whole domain (to allow caching)

• Avoid false dependencies
− Pointers!
− I/O statements inside loops (for

debugging)
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2.3 Programming for the future
• Use modules instead of passing arguments

(if you always pass the same object)
− Easier promotion of scalar procedures
− Easier promotion of variables to co-arrays (Fortran 2008)
− Compilers can “see” the variables better
− Adding “arguments” is a local modification

(not throughout call stack)
• Use modules instead of user-defined types

− Easy promotion of variables to co-arrays
− Avoid artificial dependencies
− Encourage operations on aggregates
− Simpler for others to understand
− Simpler for compilers to understand
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Modules caveat: side effects
• Assume

− sub1 gets x and y passed in as arguments
− sub1 calls sub2
− Sub2 has some arguments (not x and y)
− Sub2 uses x and y imported via modules and

modifies y
• Then

− cannot easily tell when looking at sub1 what might
be changed in sub2 (side effects)

− Not consistent in how vars are passed, confusing
− Modules can hide information from the reader
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Side-effects example
• VMEC2000 (fusion)
   SUBROUTINE sweep3_blocks (xc, xcdot, gc, nmax_jog)
      USE vmec_main, ONLY: r01, z01
      REAL(8), DIMENSION(ns,0:ntor,0:mpol1,ntyptot) :: &
        xc, xcdot, gc, xstore

  CALL FUNCT3D(istat)
   xstore = xc
   N2D: DO n_2d = 0, ntor
      M2D: DO m_2d = 0, mpol1
         DO i = 1, nsize
            js = radial_pts(i)
            xc(js,n_2d,m_2d) = xstore(js,n_2d,m_2d) + hj
            xcdot(js,n_2d,m_2d) = hj
         ENDDO
         CALL FUNCT3D(istat)            ! xc is input, gc is output
         xc = xstore
         xcdot = 0
      ! gc is used to update other arrays not shown
      ENDDO
   ENDDO



Portable Performance-Oriented Programming    43

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Side-effects example
• Code is legal, but hard to figure out
• The comments aren’t there in the real

code
− Should be!

Necessary for understanding
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3. General optimizations
• Focus on single-processor performance
• Use following strategies (in order of

increasing effort and difficulty)
− Minor source code modifications
− Best compiler optimization options
− High-performance library and algorithm
− Tuning code for a particular system

• Will not cover compiler options, libraries,
or algorithms here
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3. General optimizations
1. Removing clutter [Dowd]

− Subroutine overhead
− Branches
− Other

2. FP/loop optimizations
− Unrolling, etc.

3. Data locality
− Blocking/clumping

• BLAS 2 and 3 - careful about overhead
− Array re-indexing
− Ambiguity in memory references

4. Directives
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3.1 Removing clutter
• Subroutine overhead

− Very large on vector machines, prevents
vectorization  very important

− Also a factor on superscalar machines
• Two techniques

1. Some compilers can do automatic inlining
• Further gains can be had by doing it yourself
• Manual inlining is not necessarily recommended

2. Push loops down into subroutines
• Eliminates subroutine overhead and allows for more

efficient vectorization in the subroutines
• Will look at this more later
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3.1 Removing clutter
do j = 1,n

  if (test(j) .eq. 1) then

    do i =1,n

      a(i,j) = a(i,j) + b(i,j)

    enddo

  else

    call STOP_PROGRAM(); endif

enddo

• Call to STOP_PROGRAM
prevents parallelization

do j = 1,n

  if (test(j) .eq. 1) call
STOP_PROGRAM()

enddo

do j = 1,n

  do i =1,n

      a(i,j) = a(i,j) + b(i,j)

 enddo; enddo

• STOP_PROGRAM almost
never called, separate it

• “a” does not end up the same
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3.1 Removing clutter
• Manual inlining example: S3D

       DO 90 K = 2, KK
#ifdef VECTORVERSION
C  Manually inline for X1.
           DO J = 1, K-1
              DJK(J,K) = (((COFD(4,J,K) * ALOGT) +
     $                        COFD(3,J,K)) * ALOGT +
     $                        COFD(2,J,K)) * ALOGT +

COFD(1,J,K)
           ENDDO
#else
          CALL MCEVAL4 (ALOGT, K-1, COFD(1,1,K), DJK(1,K) )
#endif
 90     CONTINUE

• Compiler could inline MCEVAL4
− But doing it manually yielded even more speedup

 Is this a good macro name?
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3.1 Removing clutter
• Both techniques can result in

− More efficient code on most machines
− More-readable or less-readable code 

Be careful in their use
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3.1 Rearrange clutter?
do j = 1,n2

    do i = 1, n1

       a(i,j) = a(i+1,j+1) +
LARGE_FUNCTION(b,c,d,..)

enddo; enddo

• Inner loop will vectorize

• Nothing will stream

do j = 1,n2
    do i = 1, n1
       atemp(i,j) =

LARGE_FUNCTION(b,c,d,..)
enddo; enddo
do j = 1,n2
    do i = 1, n1
       a(i,j) = a(i+1,j+1)  + atemp(i,j)
enddo; enddo

• Inner loops will vectorize:  Most of

the work streams

• Potentially uses more memory
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3.1 Removing clutter
• Branches

− Be clear and concise with conditionals
• Put most likely to fail/pass test first for and/or tests,

respectively
• Don’t be too wordy, don’t be redundant

− Within loops
• Loops with if tests can vectorize, but still best to

move them out if at all possible
• There are ways to deal with some if-tests in loops

− See Dowd or Goedecker
− “you don’t want anything inside a loop that doesn’t have to be

there, especially an if-statement,” [Dowd]

• We’ll talk about “filters” later
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3.1 Removing clutter
• Data type conversions

− Cost several instructions
− Remove superfluous mixing of datatypes

• Sign conversions
− Remove superfluous conversions
− A sign conversion can take several cycles

• Fortran copy overheads
− Passing a slice (substructure) of an array

often copies the data into a work array
(memory bandwidth)
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3.1 Removing clutter
• Floating-point exceptions

− Handled differently by vendors
− Execution may stop, or continue with nonnumeric

values
• Execution can be much slower with NaNs

− Might be result of incorrect programming, or result of
compiler optimizations

• Recommendation is this must be watched out
for
− Either with internal checks in code (compile- or run-

time) or compiler switches
− If it happens, your code can run extremely slow
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3.2 FP/Loop optimization
• Loop unrolling

− Positives
• Exposes parallelism by fattening up the loop

− Potential negatives
• Unrolled by wrong factor (machine dependent)
• Register spilling
• Instruction-cache misses
• Other hardware delays

− Shared memory machines: false sharing
• Less readable (unless using directives)

• Don’t do this manually
− Use directives instead
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Loop-unrolling example
     if(na.gt.40*nb) then
!DIR$ PREFERSTREAM
          do ia=1,na
!DIR$ SHORTLOOP
          do ib=1,nb,4
             sum00 = (0.0,0.0)
             sum01 = (0.0,0.0)
             sum02 = (0.0,0.0)
             sum03 = (0.0,0.0)
!DIR$ PREFERVECTOR
          do ic=1,na
             sum00 = sum00 + Xj(ib,ic)*AA(ic,ia)
             sum01 = sum01 + Xj(ib+1,ic)*AA(ic,ia)
             sum02 = sum02 + Xj(ib+2,ic)*AA(ic,ia)
             sum03 = sum03 + Xj(ib+3,ic)*AA(ic,ia)
          enddo
             XjAA(ib,ia) = sum00
             XjAA(ib+1,ia) = sum01
             XjAA(ib+2,ia) = sum02
             XjAA(ib+3,ia) = sum03
          enddo
          enddo

 …
! also have the remainder case
        do ib=nb-mod(nb,4)+1,nb
…
 else
          XjAA(1:nb,1:na) = matmul( Xj(1:nb,1:na),

AA(1:na,1:na) )
 endif

Don’t do this!
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3.2 FP/Loop optimization
• Associative transformations

− Numerically not equivalent (potential to alter
answers)

− Vector reduction
• Calculate several iterations at a time

independently, or
• Calculate partial sums then assemble

− Usually done by compiler at high optimization
levels or in optimized math libraries
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3.2 FP/Loop optimization
• Loop interchange

− Rearrange loop nest so the right stuff is at the
center

− Swap high trip counts for low
− Increase parallelism (via unrolling)
− Improve memory-access patterns

• Unit-stride access
• Reuse cache and registers
• See next section
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3.3 Data locality

• Memory access is a major bottleneck on
machines with a memory hierarchy

• Optimizing memory access has a large
potential for performance improvements
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3.3 Data locality
• Potential optimization issues

− Strides
− Loop reordering for optimal locality
− Loop fusion to reduce unnecessary memory

references
− Data structures
− Blocking
− Cache thrashing
− Ambiguity in memory references
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Strides
• Unit stride is still the best

− Conserves cache entries
• Can’t eliminate strided memory accesses

− Try restructuring loops to minimize cache and
TLB misses

− Try not to get too ugly
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Beware low trip counts
• Assume n1=n2>100, n3<20

do j = 1,n2

  do i = 1,n1

   do k = 1, n3

      atemp( k ) = f(i,j,k)+…

   enddo

   do k=1,n3

      c(i,j,k) = c(i,j,k) + atemp(k)+…

   enddo

enddo; enddo

• k loop parallel; i, and j are not

• Short trip count on k makes code
less efficient

• Promote atemp
do j = 1,n2
  !dir$ prefervector
  do i = 1,n1
   do k = 1, n3
      atemp( i,j,k ) = f(i,j,k)+…
   enddo
   do k=1,n3
      c(i,j,k) = c(i,j,k) + atemp(i,j,k)+…
   enddo
enddo; enddo
• Now i and j parallel; much more

efficient
• Increased memory usage
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Loop reordering
• Two aspects:

− Interchanging loops
• Simple (possibly just a directive)
• But usually not enough

− Swapping array indices
• If declared in a module, could be quite simple

to do (assuming Fortran array syntax)
• In general, tedious and error prone
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Loop interchange
• Some compilers can interchange loops

− May need to use directive
ir------<       do j = 1,200
ir MVs--<         do i = 1,200
ir MVs              a(i) = a(i) + b(i,j) * c(j)
ir MVs-->         end do
ir------>       end do

• X1E compiler can “hoist” a(i) after
interchange
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Loop interchange
• Before
  do nn=0,n_max
     do i=1,n_x
        do n1=-n_max+nn,n_max
           ! f dg/dr - g df/dr
           fgr(nn,i) = fgr(nn,i)+&
              fn(n1,i)*gn_r(nn-n1,i)-&
              gn(n1,i)*fn_r(nn-n1,i)
           ! g df/dp - f dg/dp
           afgp(nn,i) = fgp(nn,i)+&
              gn(n1,i)*fn_p(nn-n1,i)-&
              fn(n1,i)*gn_p(nn-n1,i)
           ! df/dp dg/dr - df/dr dg/dp
           fg2(nn,i) = fg2(nn,i)+&
              fn_p(n1,i)*gn_r(nn-n1,i)-&
              fn_r(n1,i)*gn_p(nn-n1,i)
        enddo ! n1
     enddo ! i
  enddo ! nn

• After
 do i=1,n_x
    do nn=0,n_max
        do n1=-n_max+nn,n_max
           ! f dg/dr - g df/dr
           fgr(nn,i) = fgr(nn,i)+&
              fn(n1,i)*gn_r(nn-n1,i)-&
              gn(n1,i)*fn_r(nn-n1,i)
           ! g df/dp - f dg/dp
           afgp(nn,i) = fgp(nn,i)+&
              gn(n1,i)*fn_p(nn-n1,i)-&
              fn(n1,i)*gn_p(nn-n1,i)
           ! df/dp dg/dr - df/dr dg/dp
           fg2(nn,i) = fg2(nn,i)+&
              fn_p(n1,i)*gn_r(nn-n1,i)-&
              fn_r(n1,i)*gn_p(nn-n1,i)
        enddo ! n1
     enddo ! nn
  enddo ! i

n_max=63 and n_x=400
1.2x faster on X1E
2x faster on XT3
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Index swap
• Gyro before

 complex, dimension(-n_max:n_max,n_x) :: fn, fn_r, gn, gn_r
   do i_diff=-m_dx,m_dx
      do i=1,n_x
         do nn=0,n_max
            fn_r(nn,i) = fn_r(nn,i)+w_d1(i_diff)*fn(nn,i+i_diff)
            gn_r(nn,i) = gn_r(nn,i)+w_d1(i_diff)*gn(nn,i+i_diff)
         enddo ! nn
      enddo ! i
   enddo ! i_diff
   do i=1,n_x
       do nn=1,n_max
          fn_r(-nn,i) = conjg(fn_r(nn,i))
          gn_r(-nn,i) = conjg(gn_r(nn,i))
       enddo ! nn
   enddo ! i
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Index swap
• Gyro after

 complex, dimension(n_x,-n_max:n_max) :: fn, fn_r, gn, gn_r
   do i_diff=-m_dx,m_dx
      do i=1,n_x
         do nn=0,n_max
            fn_r(i,nn) = fn_r(i,nn)+w_d1(i_diff)*fn(i+i_diff,nn)
            gn_r(i,nn) = gn_r(i,nn)+w_d1(i_diff)*gn(i+i_diff,nn)
         enddo ! nn
      enddo ! i
   enddo ! i_diff
   do i=1,n_x
       do nn=1,n_max
          fn_r(i,-nn) = conjg(fn_r(i,nn))
          gn_r(i,-nn) = conjg(gn_r(i,nn))
       enddo ! nn
   enddo ! i
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Loop fusion
• Fusing loops together can result in better

reuse of loaded data
• Idea is to issue as few loads of array

elements as possible before storing
results and flushing the cache

• Many compilers do this at highest
optimization levels
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Loop fusion, before
        do i=1,n_x
           do nn=0,n_max
              fn_p(nn,i) = -i_c*n_p(nn)*fn(nn,i)
              gn_p(nn,i) = -i_c*n_p(nn)*gn(nn,i)
           enddo
        enddo
        fn_r = (0.0,0.0)
        gn_r = (0.0,0.0)
        do i_diff=-m_dx,m_dx
           do i=1,n_x
              do nn=0,n_max
                 fn_r(nn,i) = fn_r(nn,i) + &
                           w_d1(i_diff)*fn(nn,i+i_diff)
                 gn_r(nn,i) = gn_r(nn,i) + &
                           w_d1(i_diff)*gn(nn,i+i_diff)
              enddo ! nn
           enddo ! i
        enddo ! i_diff

        x_fft(:,:) = (0.0,0.0)
        do i=1,n_x
           do nn=0,n_max
              x_fft(nn,i) = fn(nn,i)
              x_fft(nn,n_x+i) = gn(nn,i)
              x_fft(nn,2*n_x+i) = fn_p(nn,i)
              x_fft(nn,3*n_x+i) = gn_p(nn,i)
              x_fft(nn,4*n_x+i) = fn_r(nn,i)
              x_fft(nn,5*n_x+i) = gn_r(nn,i)
           enddo
        enddo
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Loop fusion, after
       x_fft(:,:) = (0.0,0.0)
       do nn=0,n_max
           do i=1,n_x
              fn_r = (0.0,0.0)
              gn_r = (0.0,0.0)
              do i_diff=-m_dx,m_dx
                 fn_r = fn_r+w_d1(i_diff)*fn(nn,i+i_diff)
                 gn_r = gn_r+w_d1(i_diff)*gn(nn,i+i_diff)
              enddo ! i_diff
              fn_p = -i_c*n_p(nn)*fn(nn,i)
              gn_p = -i_c*n_p(nn)*gn(nn,i)
              x_fft(nn,i) = fn(nn,i)
              x_fft(nn,n_x+i) = gn(nn,i)
              x_fft(nn,2*n_x+i) = fn_p
              x_fft(nn,3*n_x+i) = gn_p
              x_fft(nn,4*n_x+i) = fn_r
              x_fft(nn,5*n_x+i) = gn_r
           enddo
        enddo

Reduced memory-
bandwidth requirement

Moral: Might need to
combine techniques
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Blocking
• Retrieve as much data as possible with as few

cache misses as possible
• Rearrange loop nests to work on neighborhoods

of data - blocks or submatrices
• Block size (blocking parameter) depends on the

cache size or vector length - machine
dependent

• Design resulting code to be portable
− Make block size an input or compile-time parameter

• WARNING:  Don’t write hand-coded versions of
common computational kernels if more efficient
implementations exist.
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Matrix-multiplication example*
real*8 a(n,n), b(n,n), c(n,n)

do ii=1,n,nb

  do jj=1,n,nb

    do kk=1,n,nb

      do i=ii,min(n,ii+nb-1)

        do j=jj,min(n,jj+nb-1)

          do k=kk,min(n,kk+nb-1)

            c(i,j)=c(i,j)+a(j,k)*b(k,i)
          end do

        end do

      end do

    end do

  end do

end do
* Required in any performance tutorial.
(Use BLAS3 instead!)



Portable Performance-Oriented Programming    73

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Blocking example: CLM
• Community Land Model
• Pass loops bounds to physics routines
• Introduce new outer loop with large stride

− Use loop index and stride to define array blocks
− Tunable for different systems
− Small blocks for cache-dependent superscalar

systems
− Full-size blocks for vector-only systems
− Large blocks for vector systems with additional

dimensions of parallelization (threads/streams)
− Implicitly controls the vector length
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Blocking example: CLM
nclumps = get_proc_clumps()
do nc = 1, nclumps
call get_clump_bounds(nc, …,
begc, endc, …)

…
call Hydrology1(begc, endc, …)

…
end do
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Cache thrashing
• Effective size of cache is much smaller than

physical size because of mapping rules and
access pattern
− For example, direct mapping or set associative

• Memory references are mapped to same set of
cache slots while other slots remain unused

• FFTs, multipole methods, wavelet transforms
where leading dimensions are a high power of 2

• Padding arrays usually fixes the problem
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Reference ambiguity
• Difficult for compiler to distinguish from

other, possibly conflicting references
• Compiler cannot determine if two index

expressions point to the same location
− Can’t tell  can’t optimize
− Prevents parallelism

• Use directives
• See filters, next section



Portable Performance-Oriented Programming    77

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.4 Directives
• Easy way to give compiler more

information so it can do its job
• Mostly portable

− Just comments
− Some vendors’ compilers recognize other

vendors’ directives
• Could be a gotcha?
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Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies
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4. Advanced optimizations
1. Pushing loops down
2. Data structures
3. Filters
4. False dependencies
5. Vector replication
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4.1 Pushing loops down
• Push loops down into subroutines

− Eliminates subroutine overhead and allows for
more efficient vectorization in the subroutines

− Examples: Gyro, S3D, CLM
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4.1 Pushing loops down
• Gyro before

   complex :: RHS_overshoot, RHS_drift, RHS_star
   [...]
  ! PERIODIC
  do i=1,n_x
     do m=1,n
        m0 = m_phys(ck,m)
        call manage_overshoot(fh0(m,i),RHS_overshoot)
        RHS_drift = o_d1(m0,i,p_nek_loc,is)*fh(m,i)
        RHS_star = o_star(in_1,ie,is,i)*density(is,i)*&
             gyro_u(m,i,p_nek_loc,is)
        RHS(m,i,p_nek_loc,is) = RHS(m,i,p_nek_loc,is)+&
             RHS_overshoot+i_c*(RHS_drift-RHS_star)
     enddo ! m
  enddo ! i
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4.1 Pushing loops down
• Gyro after

  complex, dimension(n,i1:i2) :: RHS_overshoot
  complex :: RHS_drift, RHS_star
  [...]
! PERIODIC
 call manage_overshoot(fh0,RHS_overshoot)
  do i=1,n_x
     do m=1,n
        m0 = m_phys(ck,m)
        RHS_drift = o_d1(m0,i,p_nek_loc,is)*fh(m,i)
        RHS_star = o_star(in_1,ie,is,i)*density(is,i)*&
             gyro_u(m,i,p_nek_loc,is)
        RHS(m,i,p_nek_loc,is) = RHS(m,i,p_nek_loc,is)+&
             RHS_overshoot(m,i)+i_c*(RHS_drift-RHS_star)
     enddo ! m
  enddo ! i
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4.1 Pushing loops down
• Portability comments

− Increased memory usage
• RHS_overshoot from scalar to 2D array

• Performance comments
− Huge win on vectors
− Same speed or faster on superscalars

• Otherwise
− No harder to read/understand code
− No harder to port
− No machine-specific code
− manage_overshoot now works on arrays instead of

scalars
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4.2 Data structures
• Data structures may prevent optimizations

− Arrays of pointers to derived types
− Variables implemented as scalars in each instance of a derived

type
− Science routines called for each grid or subgrid

• Pros?
− Object-oriented design
− Not too bad on cache-based scalar platforms

• Cons
− Leads to large, unpredictable strides
− Not conducive to vector processing or superscalar processing
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CLM data structure

[Hoffman, 2005]
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CLM 2.1
• Arrays of pointers to derived types
• Outer loops over each element
• Many if tests
• Strided memory accesses
• Unvectorizable
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CLM vector prototype
• Prototype only implemented for part of model

− See CUG 2003 paper

• Arrays grouped in modules
− No derived types
− Index arrays implement hierarchy

• Outer loops over “clumps” of elements (shown earlier)
• Scalar blocks become loops over elements of a clump
• Index filters replace many if tests (see next section)
• Vectorizes automatically
• Also faster on superscalar architectures
• Fewer lines of code
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CLM 3.0
• Derived types with array pointers

− Pointing into contiguous arrays
• Outer loops over “clumps” of elements
• Scalar blocks become loops over elements of a

clump
• Index filters replace many if tests
• Vectorizes

− Requires many concurrent directives, thanks to
pointers

• Also faster on superscalar architectures
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4.3 Filters
• if statements reduce parallelism

− Masks vector operations  redundant ops
• Implement index filter instead
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4.3 Filters
!dir$ permutation(filterp)

fn =0
do pi = plb, pub
  if (<test>) then
     fn = fn+1
     filterp(fn) = pi
  end if
end do
do fi =1, fn
  pi = filterp(fi)
  oi = pcolumn(pi)
  gi = pgridcell(pi)
    …
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4.3 Filters
• Portability comments:

− It’s personal whether filters are harder to read
than the original loop with if-test code

− Potentially increases memory usage, but not
much

− No machine-specific code
• Performance:

− Much better on vector
− Often better on superscalar
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4.4 False dependency
• Code can inhibit parallelism (serializes

execution) though iterations are
completely independent

• Example: temporary arrays

• Note: here we are not talking about
cache-related false dependency
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4.4 False dependency
common /something/ atemp(n)

do j = 1,m

   do i = 1, n

      atemp( i ) = sqrt( b(i,j) )

      c(i,j) = c(i,j) + atemp(i)

enddo; enddo

• Outer loop does not parallelize
due to false dependency on
atemp

real stemp

do j = 1,m

   do i = 1, n

      stemp = sqrt( b(i,j) )

      c(i,j) = c(i,j) + stemp

enddo; enddo

• Outer loop parallelizes;  More
efficient

• May manually fuse loops to
remove temporary arrays
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VMEC2000 example
   CALL FUNCT3D(istat)
   xstore = xc
   N2D: DO n_2d = 0, ntor
      M2D: DO m_2d = 0, mpol1
         DO i = 1, nsize
            js = radial_pts(i)
            xc(js,n_2d,m_2d) = xstore(js,n_2d,m_2d) + hj
            xcdot(js,n_2d,m_2d) = hj
         ENDDO
         CALL FUNCT3D(istat)            ! xc is input, gc is output
         xc = xstore
         xcdot = 0
      ! gc is used to update other arrays not shown
      ENDDO
   ENDDO
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VMEC2000 example
• Outer loops are independent
• Can any compiler parallelize this?
• Must be rewritten to parallelize
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4.5 Vector replication
• Replicate an array to vectorize multiple

updates to the same elements
• Similar trick at a smaller scale for

OpenMP by privatizing the array
• Notice #ifdef _UNICOSMP
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GTC vector replication
   15.                  #ifdef _UNICOSMP
   16.                    integer, parameter :: vlen = 256
   17.                    integer :: mv, v
   18.                    real(wp) vdensityi(mgrid,0:mzeta,vlen)
   19.                  #endif
   20.                    real(wp) dnitmp(0:mzeta,mgrid)
   21.
   32.  r V M----<><><>   densityi=0.0
   81.                  #ifdef _OPENMP
   91.                  !$omp parallel private(dnitmp)
   93.                    dnitmp=0.   ! Set array to zero
   94.                  #elif defined _UNICOSMP
   95.  r V M----<><><>   vdensityi=0.
   96.                  #endif
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GTC vector replication
  122.  m MVs 3      #ifdef _OPENMP
  123.  m MVs 3      ! Use thread-private temp array dnitmp to store the

results
  124.  m MVs 3          ij=jtion0(larmor,m)
  125.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt00
  126.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt00
  128.  m MVs 3          ij=ij+1
  129.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt10
  130.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt10
  132.  m MVs 3          ij=jtion1(larmor,m)
  133.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt01
  134.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt01
  136.  m MVs 3          ij=ij+1
  137.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt11
  138.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt11



Portable Performance-Oriented Programming    99

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
  139.  m MVs 3   #elif defined _UNICOSMP
  140.  m MVs 3        ij=jtion0(larmor,m)
  141.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt00
  142.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt00
  144.  m MVs 3        ij=ij+1
  145.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt10
  146.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt10
  148.  m MVs 3        ij=jtion1(larmor,m)
  149.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt01
  150.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt01
  152.  m MVs 3        ij=ij+1
  153.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt11
  154.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt11
  173.  m MVs 3   #endif
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GTC vector replication
  181.             #ifdef _OPENMP
  182.             ! accumulate results from each thread-private
  183.             ! array dnitmp()into the shared array densityi
  185.             !$omp critical
  186.               do ij=1,mgrid
  187.                  do kk=0,mzeta
  188.                     densityi(kk,ij)=densityi(kk,ij)+dnitmp(kk,ij)
  189.                  enddo
  190.               enddo
  191.             !$omp end critical
  193.             #elif defined _UNICOSMP
  194.  ir-------<   do v=1,vlen
  195.  ir 2-----<      do kk=0,mzeta
  196.  ir 2               !dir$ preferstream
  197.  ir 2 MV--<         do ij=1,mgrid
  198.  ir 2 MV               densityi(kk,ij) = densityi(kk,ij) +

vdensityi(ij,kk,v)
  199.  ir 2 MV-->         enddo
  200.  ir 2----->      enddo
  201.  ir------->   enddo
  202.             #endif



Portable Performance-Oriented Programming    101

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
• Portability comments:

− Increases memory usage
− No harder to read/understand than OpenMP section
− Overall code is getting ugly

• OpenMP, UNICOS/mp, and serial
• What could be done better?

− Could macro names be better?
• Performance gain:

− Huge on vector machines
− SMP gains for OpenMP



Portable Performance-Oriented Programming    102

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies
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5.0 Case studies
• The following are “case studies” of some

DOE codes
• “Case study” does not necessarily mean a

short highly energized study of a code
− Some will be summaries of the evolution of

codes over a several year timeframe
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CLM 3.0
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Gyro
• Gyro is a [fusion] microturbulence code, [Candy]

− Continuum (Eulerian)
− 5-D
− Runs on a variety of machines:  IBM Power4, Cray

X1E and XT3, SGI Altix, Opteron clusters
• Summary covers revisions of code from early

2.x versions to 4.
− Some revisions were direct result of optimizations

discussed earlier
− Some portability techniques also evident in Gyro
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Positive code features of Gyro
• DEBUG and VERBOSE input flags
• Checkpointing

− Current and previous checkpoints
• Prints out norms of arrays
• No derived types or pointers

− Just arrays
• Uses modules to pass arguments

− Easy promotion/demotion of arrays
• Consistent programming style

− Consistent naming scheme of vars and files
• Comment-based data structures
• Simple but effective make system

− Some support Python scripts
− No preprocessing (multiple sources controlled by make)
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Gyro optimizations
• Directives
• Checkpoints were originally formatted, now

unformatted
• Pushed loops down
• Fused loops/reduced temporary memory

usage
− 25% gain in nonlinear-advance FFT routine

• Vectorized across tridiagonal solves
− With reworking data structures and reworking

setup loops, big win on X1E
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Gyro optimizations
• Swapped indices

− 10% gain on X1E, slower on Opterons
• Fix for sqrt(1-x) where x~1
• Pseudo-poly-algorithmic

− Different sources for a few (core)
computationally intense routines (nonlinear
advance +/- FFTs)

− Controlled by make system
• New parallel “distribution” algorithm

− Big win on all machines
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S3D
• Combustion code, PI: Jackie Chen
• Direct numerical simulation of 3D

turbulent non-premixed flames
• Runs on variety of machines including

IBM SP, Cray X1E, Cray XT3, Opteron
cluster, SGI Altix
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Positive code features of S3D
• Checkpoints at regular intervals

− Useful for postprocessing/movies
− Eats up disk space

• Consistent programming style
• Uses modules to pass arguments

− Easy promotion/demotion of arrays
• Simple and effective make system
• Sparingly uses (descriptive) #ifdef macros

− Some for machine specific opts: VECTORVERSION
− Some for alternate method: SAVEFILESINSEPDIR
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S3D optimizations
• After already ported and somewhat optimized

by user
• Push 2 loops of triple nest down

− ~2x speedup (for that version) on X1E
• Add directives
• Removal of MPI Derived Types

− ~2x speedup (for that version) on X1E, significant
gain on other machines

− Co-Array Fortran initially a workaround
• Overall ~3x speedup on X1E
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GTC
• Fusion microturbulence code
• Particle-in-cell (PIC)

• Optimizations/modifications
− Saw vector replication earlier
− Used filter to fix “less efficient” compiler

vectorization (following)
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GTC: Fixing “less efficient”
• A Cray X1[E]-ism

− Can easily be missed, shows up in messages
at the bottom of “.lst” file

 A vectorized loop contains potential conflicts
due to indirect addressing at line 266, causing
less efficient code to be generated.

• Moral: always check compiler messages
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GTC: fixing less efficient
• Before:

  264.  MV-------------<     do m=1,mi

  265.  MV                          ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))

  266.  MV                          dtem(ip)=dtem(ip)+wpi(2,m)*zion(5,m)

  267.  MV                          dden(ip)=dden(ip)+1.0

  268.  MV------------->     enddo

...

ftn-6371 ftn: VECTOR File = pushi.F90, Line = 264

  A vectorized loop contains potential conflicts due to indirect addressing at

  line 266, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.F90, Line = 264

  A vectorized loop contains potential conflicts due to indirect addressing at

  line 267, causing less efficient code to be generated.

ftn-6204 ftn: VECTOR File = pushi.F90, Line = 264

  A loop starting at line 264 was vectorized.

ftn-6601 ftn: STREAM File = pushi.F90, Line = 264

  A loop starting at line 264 was multi-streamed.
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GTC: fixing less efficient
• After:

  265.  Vw V M----<><><>      vdtem=0

  266.  f-------------<>      vdden=0

  267.  m--------------<      do mv=1,mi,vlen

  268.  m MVs----------<         do m=mv,min(mv+vlen-1,mi)

  269.  m MVs                       v=m-mv+1

  270.  m MVs                       ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))

  271.  m MVs                       vdtem(v,ip)=vdtem(v,ip)+wpi(2,m)*zion(5,m)

  272.  m MVs                       vdden(v,ip)=vdden(v,ip)+1.0

  273.  m MVs---------->          enddo

  274.  m-------------->      enddo

  275.  M--------------<      do i=1,mflux

  276.  M Vw V 4--<><><>         dtem(i)=sum(vdtem(:,i))

  277.  M f-----------<>         dden(i)=sum(vdden(:,i))

  278.  M-------------->      enddo
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CAM
• Community Atmospheric Model (CAM)
• Developed at NCAR
• Used for weather and climate research
• Atmospheric component of CCSM

− Must run efficiently on a variety of computers
− Must port easily

• Results must be invariant wrt number of
processors used
− Must disallow some [compiler] optimizations
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CAM
• Compile-time or run-time parameters to optimize

performance for a given platform, problem or processor
count
− pcols is maximum number of columns assigned to a chunk
− Large pcols gives long inner loops, good for vectorization
− Small pcols effective for caching and pipelining, uses less memory

• Code fragments enabled for certain systems, controlled
by cpp tokens
− For example, implementations for vector and nonvector systems

• cpp tokens for math library routines with different calling
sequences on different systems (primarily FFTs)

• Many load-time and run-time options for parallel load-
balancing of physics



Portable Performance-Oriented Programming    118

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Don’ts: nameless DOE code
• Important DOE code doing production work

− Many issues with this code (in our opinion)
− Shall remain nameless

• Problems include
− Poor choice of macro names
− Poor placement of #ifdefs
− Extensive mixing of C and Fortran
− Improper use of PETSc
− Programming style not consistent

• Probably result of many authors over many years
− Lots of dead code
− No internal timers, checks
− Lack of comments
− No runtime verbosity
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Nameless examples (just a few)
1. Used implicit none, but then did the wrong

thing
 subroutine xyz
      implicit none
      integer ierr,MPI_COMM_WORLD

2. CPP instead of Fortran include
 subroutine abc3d(arg, myrank)
#include "mpif.h"

3. Short, cryptic variable names
    DATATYPE2 zz,oz,tz,sz,
&     con,don,e,a1,a2,a3,
&     a4,a5,a6,b1,b2,b3,b4,b5,b6,
&     c1,c2,bill,bob
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Nameless examples
4. Computed gotos, spaghetti code

 if(iop(1)-5) 201,200,201
  201 c1=w(1)
        if(iop(2)-5) 203,202,203
  203 c2=w(k4)
        goto 205
  200 if (n-4)300,302,302
  302 a1=x(1)-x(2)
C  …. Work
        goto 201
  202 if (n-4)300,303,303
  303 b1=x(n)-x(n-3)
C  …. More work
        goto 203
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Nameless examples
5. Potential MPI deadlock

SUB1
all procs call MPI_SEND

SUB2
all procs call corresponding MPI_RECV

MAIN
call SUB1
call SUB2

6. Saved variable lmax typo?
      integer lmax
      save lmax

if(ncy.eq.0) lmax=lfu
write(*,*) lmax,u(lmax)
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